做情感分析离不开情感词,情感词是承载情感信息最基本的单元,除了基本的词之外,一些包含了情感含义的短语和成语我们也将其统称为情感词。基于情感词典的情感分析方法,主要是基于一个包含了已标注的情感词和短语的词典,在这个词典中包括了情感词的情感倾向以及情感强度,一般将褒义的情感标注为正数,贬义的情感标注为负数。 具体的步骤是,首先将待分析的文本先进行分词,并对分词后的结果做去除停用词和无用词等文本数据的预处理。然后将分词的结果与情感词典中的词进行匹配,并根据词典标注的情感分对文本进行加法计算,最终的计算结果如果为正则是褒义情感,如果为负则是贬义情感,如果为0或情感倾向不明显的得分则为中性情感或无情感。 情感词典是整个分析流程的核心,情感词标注数据的好坏直接决定了情感分类的结果,在这方面可以直接采用已有的开源情感词典。例如:BosonNLP基于微博、新闻、论坛等数据来源构建的情感词典,知网(Hownet)情感词典,台湾大学简体中文情感极性词典(NTSUSD),snownlp框架的词典等,同时还可以使用哈工大整理的同义词词林拓展词典作为辅助,通过这个词典可以找到情感词的同义词,拓展情感词典的范围。 构建情感词典是一件比较耗费人工的事情,存在精准度不高,新词和网络用语难以快速收录进词典等问题,同时基于词典的分析方法也存在很多的局限性。例如一个句子可能出现了情感词,但并没有表达情感。或者一个句子不含任何情感词,但却蕴含了说话人的情感。以及部分情感词的含义会随着上下文语境的变化而变化的问题,例如“精明”这个词可以作为褒义词夸奖他人,也可以作为贬义词批评他人。 尽管目前存在诸多问题,但基于字典的情感分析方法也有着不可取代的优势,这种分析方法通用性较强,大多数情况下无需特别的领域数据标注就可以分析文本所表达的情感,对于通用领域的情感分析仍然是首选的方案。
|