设为首页收藏本站

大数据论坛

 找回密码
 立即注册

QQ登录

只需一步,快速开始

搜索
查看: 266|回复: 1

基于机器学习的情感识别

[复制链接]
发表于 2019-11-5 17:06:21 | 显示全部楼层 |阅读模式

很多分类算法,例如逻辑回归、朴素贝叶斯、KNN等,这些算法都可以用于情感识别。具体的做法与机器学习一样需要分为两个步骤:第一步是根据训练数据构建算法模型;第二步是将测试数据输入到算法模型中输出对应的结果。
首先,我们需要准备一些训练用的文本数据,并人工给这些数据做好情感分类的标注。通常的做法下:如果是褒义和贬义的两分类,则褒义标注为1,贬义标注为0,如果是褒义、贬义和中性三分类,则褒义标注为1,中性标注为0,贬义标注为-1。
在这一环节中如果用纯人工方法来进行标注,可能会因为个人主观因素对标注的结果造成一定影响,为了避免人的因素带来的影响,也为了提高标注的效率,有一些其他取巧的方法来对数据进行自动标注。
比如:在电商领域中,商品的评论除了文本数据之外通常还会带有一个5星的等级评分,我们可以根据用户的5星评分作为标注依据,如果是1-2星则标注为贬义,如果是3星标注为中性,4-5星标注为褒义。
又比如:在社区领域中,很多社区会对帖子有赞和踩的功能,这一数据也可以作为情感标注的参考依据。
第二步是将标注好情感倾向的文本进行分词,并进行数据的预处理,。
第三步是从分词的结果中标注出具备情感特征的词,如果是对情感进行分类,可以参考情感词典进行标注,也可以采用TF-IDF算法自动抽取出文档的特征词进行标注。如果分析的是某个特定领域的,还需要标注出特定领域的词,例如做商品评价的情感分析,需要标注出商品名称,品类名称,属性名称等。
第四步根据分词统计词频构建词袋模型,形成特征词矩阵,如表所示。在这一步可以根据业务需要给每个特征词赋予权重,并通过词频乘以权重得到特征词分数。最后一步就是根据分类算法,将特征词矩阵作为输入数据,得到情感识别最终的分类模型。
当训练好分类模型之后,就可以对测试集进行分类了,具体的流程与建模流程类似,先对测试的文本数据进行分词并做数据预处理,然后根据特征词矩阵抽取测试文本的特征词构建词袋矩阵,并将词袋矩阵的词频数据作为输入数据代入之前训练好的模型进行分类,得到分类的结果。
采用基于机器学习的方法进行情感分析有以下几个不足之处:
第一是每一个应用领域之间的语言描述差异导致了训练得到的分类模型不能应用与其他的领域,需要单独构建。
第二是最终的分类效果取决于训练文本的选择以及正确的情感标注,而人对于情感的理解带有主观性,如果标注出现偏差就会对最终的结果产生影响。
除了基于词典和基于机器学习的方法,也有一些学者将两者结合起来使用,弥补两种方法的缺点,比单独采用一种方法的分类效果要更好。
另外,也有学者尝试使用基于LSTM等深度学习的方法对情感进行分析,相信在未来,情感分析会应用在更多的产品中,帮助我们更好的理解用户需求,提升用户使用智能产品的体验。

回复

使用道具 举报

发表于 2019-11-5 17:06:24 | 显示全部楼层
秀起来~
回复 支持 反对

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

QQ|Archiver|手机版|大数据论坛 ( 京ICP备10002193号-4 京公海网安备110108001289号  

GMT+8, 2019-12-16 16:49 , Processed in 0.309718 second(s), 26 queries , Gzip On.

Powered by Discuz! X3.1

© 2001-2013 Comsenz Inc.

快速回复 返回顶部 返回列表